

ACADEMY

Boost Program

SUMMER EDITION 2020

Artificial Intelligence Package: Nostradamus

2020.ALL RIGHTS

 \odot

Introduction to Computer Vision

Data Science and Machine Learning Practical tools and programing

Training Catalogue 02/07/2020

KAÏNA-COM TRAINING CATALOGUE

Introduction to Computer Vision

Assessment of the basic functions of computer vision

Nos locaux KAÏNA-COM France LE CARRÉ HAUSSMANN II 6 Allée de la Connaissance 77 127 Lieusaint

E-mail info@kaina-com.fr

KDS004 – Introduction to Computer Vision

Reference	KDS004
Experience	 □ Beginner ☑ Intermediate □ Advanced
Duration	Training Program: • 2 days
Training Method	 I: i-learning, individual training (web-based training) V: v-learning, virtual class
	 C: c-learning, classroom training KAÏNA-COM LE CARRÉ HAUSSMANN II, 6 Allée de la Connaissance 77127 Lieusaint - France
Prerequisite	One to two years programming skills in any other languages
Audience	Data Scientist, High level Managers, Presale Managers, IT Managers, QA and Technical Support or those who wants to know more about Computer Vision.
	Continued on next page

KDS004 – Introduction to Computer Vision, Continued

Objective This course holds two days of the basic functions of computer vision including:

- Basic filters,
- Edge detectors,
- Feature extractor,
- Object (face) identifier,
- Optical flow
- Additional subjects.

The students are experiencing this field by coding in matlab and python with openCV

KDS004 – Introduction to Computer Vision, Continued

Course Contents

Course Contents :

Chapter	Description
Image processing & Matching	Introduction to OpenCV with PythonInstallation / API
Basic Operators	 Median, Box, common neighbors convolution and kernel filters Coding example: filtering an image and seeing results Segmentation and thresholding methods Morphological operators: dilate erode Coding example: dilate/erode showing results and solving a basic problem Connected components and labeling
Edge /Corner / Line detectors	 Sobel Canny Roberts Laplacian Hough transform Coding example: running Sobel vs Canny and watching results
Image Matching	 Harris Scale Invariant why?? SIFT Advance Lab SIFT Effects of different params/config (bins, scaling, best match vs NN) Effects of Noise in the image SURF

Table 1: KDS004 - Course Contents (Day#1)

KDS004 – Introduction to Computer Vision, Continued

Course Contents, continued

Table 2: KDS004 - Course Contents (Day#2)

Chapter	Description
Object detectors	 Object detection Theory Face detection Viola jones Haar Filters & Integral Image HoG
Mapping transforms - optional	 Theory: Translation, Rotation, Rigid body, affine perspective Lab OpenCV transformations
3D understanding	Camera Projection theoryTwo camerasStructured light
Optical flow and tracking	 Lucas-Kanade Theory Code Review in OpenCV (Link) & Applications
Deep Learning Intro	Overview of the technologyTools like Keras & TensorFlow
Summary including Q&A	 Summary Exercise → Processing path: Image processing & scaling ->Computer vision feature extraction ->Machine Learning classifier Q&A

Training Catalogue 02/07/2020

KAÏNA-COM TRAINING CATALOGUE

Data Science and Machine Learning Practical tools and programing

Basis of understanding the data scientist environment, focusing mainly on common frameworks to enable selecting the appropriate approach to the problems at hands

Nos locaux KAÏNA-COM France LE CARRÉ HAUSSMANN II 6 Allée de la Connaissance 77 127 Lieusaint

E-mail info@kaina-com.fr

Site Internet www.kaina-com.fr

KDS001 – Data Science and Machine Learning Practical tools and programing

Experience Beginner Intermediate Advanced Duration Training Program: • 2 days I: i-learning, individual training (web-based training) Training Method I: i-learning, individual training (web-based training) Image: C: c-learning, virtual class C: c-learning, classroom training KAÏNA-COM LE CARRÉ HAUSSMANN II, 6 Allée de la Connaissance 77127 Lieusaint - France	Reference	KDS001	
Duration Training Program: • 2 days Training Method I: i-learning, individual training (web-based training) I: i-learning, individual training (web-based training) I: v: v-learning, virtual class I: c: c-learning, classroom training KAÏNA-COM LE CARRÉ HAUSSMANN II, 6 Allée de la Connaissance 77127 Lieusaint - France	Experience	 Beginner Intermediate Advanced 	
Training Method I: i-learning, individual training (web-based training) N: v-learning, virtual class C: c-learning, classroom training KAÏNA-COM LE CARRÉ HAUSSMANN II, 6 Allée de la Connaissance 77127 Lieusaint - France	Duration	Training Program: • 2 days	
 C: c-learning, classroom training KAÏNA-COM LE CARRÉ HAUSSMANN II, 6 Allée de la Connaissance 77127 Lieusaint - France 	Training Method	 I: i-learning, individual training (web-based training) V: v-learning, virtual class 	
		 C: c-learning, classroom training KAÏNA-COM LE CARRÉ HAUSSMANN II, 6 Allée de la Connaissance 77127 Lieusaint - France 	
Prerequisite Basic programming skills in C, Java or any other language	Prerequisite	Basic programming skills in C, Java or any other language	
Audience High level Managers, Presale Managers, IT Managers, QA and Technical Support or those who would like to understand the different problems that are suitable for machine learning and exercise different frameworks	Audience	High level Managers, Presale Managers, IT Managers, QA and Technical Support or those who would like to understand the different problems that are suitable for machine learning and exercise different frameworks	

KDS001 – Data Science and Machine Learning Practical tools and programing, Continued

Objective Data scientists use a set of algorithms which enables computers to solve problems that are classified on a higher complexity level than traditional algorithms. Examples of such cases are

- to predict a consumer behavior by its past choices,
- recognize a person within an image,
- "understand" written text,
- to predict a system failure or a cyber-attack.

Machine learning algorithms allow the computer to train and learn from its own mistakes and thus perfect its performance on new data.

This course gives the basis of understanding the data scientist environment, focusing mainly on common frameworks in order to enable selecting the appropriate approach to the problems at hands.

We will review various use cases and implement appropriate models and tools.

KDS001 – Data Science and Machine Learning Practical tools and

programing, Continued

Course Course Contents :

Description
Examples and use cases
Statistics 101
Machine learning introduction
Exploratory data analysis
Cleaning the data
Filtering and scaling
Outliers and null values
• PCA
Regression and decision trees
Statistical reasoning
Clustering
Weka Introduction
Data Preparation
Feature selection

Table 1: KDS001 - Course Contents (Day#1)

KDS001 – Data Science and Machine Learning Practical tools and programing, Continued

Course Contents,

continued

Table 2: KDS001 - Course Contents (Day#2)

Chapter	Description
Machine learning in cloud environment, Big Data	ClassificationAssociation RulesDecision Trees
Validation of Results	Standard metricsROC curve analysis
Mini Project Part B: Recommendat ion System	Estimation of different modelsDemo
Summary including Q&A	Summary including Q&A

